Trusted by millions of Kenyans
Study resources on Kenyaplex

Get ready-made curriculum aligned revision materials

Exam papers, notes, holiday assignments and topical questions – all aligned to the Kenyan curriculum.

$\frac{\sqrt5 -2\sqrt3}{\sqrt2 + \sqrt{12}}$ is expression in surd form

$\frac{\sqrt5 -2\sqrt3}{\sqrt2 + \sqrt{12}}$ is expression in surd form
i) Write down the conjugate of the denominator in its simplest form
ii) Hence use the conjugate in (i) above to rationalize the denominator in the expression above

Answers


John
i) The conjugate of the denominator in simplest form

= $\sqrt2 \; - \sqrt12 \; = \; \sqrt2 \; - \; \sqrt{4\times 3}$

= $\sqrt2 -2\sqrt3$

ii) $\frac{(\sqrt5 \; 2\sqrt3)}{(\sqrt2 \; 2\sqrt3)}$ x $\frac{(\sqrt2 \; -2\sqrt3)}{(\sqrt2 \; 2\sqrt3)}$

$\frac{\sqrt{10} - 2\sqrt{15} - 2\sqrt6 \; + 4\times 3}{2\; 2\sqrt6 + 2\sqrt6 - 4 x 3}$

$\frac{\sqrt{10}\; 2\sqrt{15} \; 2\sqrt6 \; 12}{-10}$
johnmulu answered the question on March 7, 2017 at 06:12

Answer Attachments

Exams With Marking Schemes

Related Questions